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* SERIES REPRESENTATION OF GENERALIZED TEMPERATURE FUNCTIONS*
By
Deborah Tepper Haimo

1. Introduction:

In a recent paper [6], the author established
criteria for the expansion of a solution of the generalized
heat equation |
(1.1) 22 u(x,t) + 2=~ 2_u(x,t) = a>u(xt)

. > 2 x & x &% =gy ulxt),
v a fixed positive number, in a serles of polynomial
solutions P, (x,t), where

’v

n

(1.2) B, (x,8) = 2 ok ( g) C(v+i+n)  2n-2k k=

k=0 T (v+i+n-k) -

See also [1]. It is our present goal to establish that

these same critgria are necessary and sufficlent for the

‘representation of a solution of (1.1) by a Maclaurin series

G léndg?t‘;' Anélogous theorems fdfi%he dfdinary héat}

'equation are derived in [10].

*The research of this paper was supported 1n part by the
National Aeronautics and Space Administration Grant number
NGR-14-008-009. The autfor wishes to thank Professor

Dan I. Bolef for discussions with him of the applications

of the results.
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1b.

For computational purposes, these results provide a
useful means of evaluating those solutions which have Maclaurin
series expansions. In the case of the radial flow of heat in
an infinite circular cylinder, for example, the temperature

satlsfles the equation

| . |
(1.3) g-;g (x,8) + 2 58 (x,8) = 3¥ (x,8), O<x<a.

If the surface x = a 18 kept at zero temperature so that
(1.4) u(a,t) = 0 ,

and if the initial temperature 1s given by

(1.5) u(x,0) = £(x) ,

then
(1.6) u(x,t) = -5

where Jc(aha) =0, n=1, 2, ... . See, for example,

[2;7.4-7.6]. Since u(x,t) can be shown to satisfy the
criteria of our theory, it may also be expressed in the

simpler form of a double Maclaurin series.

2, Definitions and preliminary results:

The fundamental solution of the generalized heat
equation (1.1) is the function G(x,y;t) given by
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A S a2t rom K1, e,

I (z) being the Bessel runction of imaginary argument
of‘ order o . By a direct computation, we nay utablioh

v

,"ch ot the followj.ng two results.

m 2,1. For0¢x,y<®, >0,

(R )

°. (2n)! T (v +%) t"’an G( ;t)'.
2B 01 I (v +%4+n) 7

s 1, where the Bp,v (3s8) sre given by (1.2).
I.'MMA 2.,2. FPor 0¢ x, y<m 8l < ¢, & > 0,
:7;(.2,.5)1 ‘ -G(x,y; t+t?)

a@ @

D=0

"' Properties of G(x,y;t) are discussed in detail in [3].

-~ The basic property of solutions of (1.1) contral to

our. theory 1- givon in the followi.ng dofinition.
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" such that AR
C@m o uEw - S 6x,756=6') u(ry8") Aply) , ©

ﬂ where :

- " the integral converging absolutely for every t, t',
RO - a<$"<t <b, 1is said to have the Huygens property for

30 )
Definition 2.3: 4 C°2 solutien wu(x,t) of (1.1)

oo
I

@

o

2 2
d/a (x) ———l’ s x dx ,

e a <% <b. We denote by H* the class of such functions. .~
e We describe next a subclass of even entire funotions |
nportant in this study. |

A Definition 2.4 An even entire function -

A3

n=Q

S ‘ "A'belongs to the class (‘o, T), or has growth (r,r)
i Ae and enly it - |

'/,

C e &yl Cew. o

nD~-» ® Qr

Note that this notation refers to ¢(x) as a function e

L2

of - x .. The equivalent customa.ry notation would be

(29,1') -for the growth of cp(x) considered as a function

Of XJL"




E _Maclaurin series

4,

3. Region of convergence: ' ‘ - '

1

Ve determine here the region of convergence of the

@®

- _ Z 2n Z 'a2m LB LT ’
3 (3-1)"__-‘« n! r (~ +%+n) %n+m - ml . o
Lo ' meo S (-

ns=0
LEMMA 3.1. If

— (% |1/n 1

= then the series (3.1) converges for jt| €9 and diverges / e

vfo;": some constant K. Hence

Proof: For any O, 0 < @ < 1, we have, from (}.25 o .

| n S S R
{an( < K(#a'eo - ’t ” R " S P

SR n! [ (v +%+n) — +m | m! _ R

: ' ,_n-o

n+l

€ K Z nil (v+%+n) Z (n;l:O) n N

_n=0

e o et e

el o -2n
L .,-_.,K Z f;..l%l_z (n.n)’fa:(w)hn-n) (47‘00)

B=0 ns=n
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) (3.3) Z & - t: |

- —— . 50

n

R w . _ i
c n
y xé (“"'“) all(v+%+n) ]‘nZ_; 2 (.) T O/ +Yhen=n) 't‘ U

a

n=90

' KZ (mreo\ n!(’(-V+)£+n) Ph,y (x, J61)e

/

-
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An appeal to lemma 3.3 of [6] ylelds, for any .3->'0, the

| dominating series

2.y e
a0 <‘“’°°) ez (1 o gil) " [endele 8] OW

which converges for [t| + § < T Q. By taking 5 .

- arbitarily close to zero a.nd © near 1, we have
"-',fi‘-‘establiahed the absolute convergence gf the series
f(} 1) for. ¢l <o . '

If the series (3.1) were to converge for some point

L (X, ). with |6 | > ¢ , then, in particular, the simple ' .

¥
i

m=0

. must converge, and
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. or, by Stirling's formula,

G i

o ' 1/n
%l < _2

n->® n helt,

""" Since ltol > & , this contradicts hypothesis (3.2) S

| 4'.5.'.Series expansion:

We now establish our principal result.

Ve - THEOREM 4.1. A solution wu(x,t) of the general- . o
-_:Z' iszed hoat ‘equation (1.1) has the Maclaurin OXPansion'_— :

SR

~

. =l

e ol ' ® - R .

n=0

S with

. (4.2)' | . - k! (> +Zz+kl“. w(Z) (o,0) ,

(2k) ¢

confor Jtl<w L, 0 $X<®@.

' Proof: To prove sufficiency, we assume that .~

’;,"-"u(x,t) ¢ E* for |t| <o . Then, for t,t', |
e g et' <t <T ,0<x <®, by definition 2.3,

©

*]

L), ume e ) ST ) et ) -t
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-

<o gor 18l <@, Ix| <@, 1if and only 1f u(x,t) € B* . . .
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with the integral converging absolutely. We choose t' > O, -

. KNow, substituting for G(x,y; t+t') 1its series expansion

(2.37; we have, provided termwise integration is valid,

¢ o}

) uzw) = = Z,?a“t“ Lo x

n! r(v+)€+n)
nN=0 R=0

D J

- m! 24(n+n) t.a.(zml.)

f G(yit' )Pn+m » (7,-1'5')11(1’,-‘5')4/"'(1)‘ 0

. The validity of this result may be verified by an apponl

to 1 s 3 4 and 4. 7 of (6l. Hence

. i

G)

n-o R=0

BN o ‘ 2n .m
| 2
o (4.5) . u(x,t)___ l s ”m) Z ,m. :t

\;‘;ffE.-wnPre

® , : PR
) o T sGieng L, (e s o

with the series converging for Itl <&

Since u(x,t) as given by (4.3) is an analytic

runction of x, as established in theorem 3.2 of (4], we | T
" aifferentiate u(x,o), with respect to x successively
. 2n times, taking the derivative under the integral sign.

-5
o o .
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. ..

..~ Then, applying lemna 2.1 and 'comparing the result with

- .(4.6), we have the determination (4.2) for the coefficients =

o where termwise integration may be justified by lemma 3.1 ::« !
t : : and by lemma 3.3 of [6]. Using detinition (1.2), we have RN

S

R B
R [ 1. S
. - N

. ak .‘\

Conversely, to prove the necessity of the conditioms,
assumé that a solution u(x,t) has the series expamsion

(4,1) for (x|<eT' , |t} <o . Now, for

’ -'-.1',‘7_-‘3,'#',‘;‘- v< t'< t <T | we have, by lemma 2.1 of [6],‘ |

- R S 6(2,73 t-t') u(y’tl) d/.. (y)

® C
o (xyt=t") oom o SR
= Z n! r (v +¥%+n) mZ_' *n+m m! N -

N=0

g GG, Tit-8") u(F,t) Auly) =

Z n; Z %n+m zsz'm - 22‘( )r (v+}:+n-k) xzn.ak(t-t')ki‘_

D=0 =0

;»Z 22:‘;0!2- 2 (=% )kZ_ n“?(!i‘:;rn) xZn -yr,.-_-




L nir(verkem) Z n4n gy
- n=o 7 mmo ,

:‘9,,__

©

- Z n!“(-/+}é+n) Z Z— Sn4m 2? (k) t"-k (t t')k

Nuo - k=0 m=k

]

@ n

® o -
.Z ;x!":(:i}ﬁ-bn) Z /%ﬂn 2:? — (:)t'n.k (t"'t,')k o
n=o -0 SR

/

P

@

= u(x,t) .

0" Hence, by definition 2.3, u(x,t) € H* "for (t| <w,

i xi <o~ o By theorem 3.1 of [#] u(x,t) e H* for

ltl<a ,0< x< ®, and the proof is complete.

" An example illustrating the theorem is given by

. .If " ; 3 | aat ' g
S :u(x,t) =0 J (ax) which belongs to E* for

Lo - <t < ® . Here we have, for - ® < vt < m,

@

atJ(u).r(,“_mZ. (35)211 Z‘atz' ‘

n=0 22nn 1y (‘V +}$+n) =0

Changeé in order of summation at each step are verifiable. o

578
}



jﬁ(s 5) f(x) - u(x,0)

10.

5. 8Simple geries expansions in t:
Summing the double series (4.1) by rows, we may

" “represent a generalized temperature function with the

 THEOREM 5.1 1t u(x,t) ¢ He ror" 161< . and .

A

e e - yi ISECE-REENUEL R

k=0

" .. where -

b, £(x) - £"(x) + X202 .

' '}?ffaj:f(x) ;a’an even entire function of growth (1, E%’D .

_Proof: By theorem 4.1, we have

LB “W’) 'Z X Z BIrEa) .

ke=o D=0 -

L ao.tnats'*' o B

© o 3 C R 5 : -
.Z %x ’ . lx‘ < e
. alr (e %) . o

. neo

' Huygens property by a simple Maclaurin series in % , as . e
“:fiatatod in the following result. | ’ : '

Sl S LT
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© .. Fow, successive application of the operator 4x sives.

@

'v(,».Ax £(x) = Z i A 12'.‘_

n!r(v+%+n) x

;. nwo

IO/ +¥+n -k)

2k 8n+k x
-2 Z— n.(‘(V«’-}éﬂﬂ °

7 Substituting (5.4) in (5.2), we find that .

G -Z b 1@ E‘ -

k=0

Now, £(x) is an even entire functien. Purther, by = ' -

: Stirling's formula, and by (3.5), we note.that

l;‘»};j;.‘.:(s s) = [ %] ] . ol

n—>® € [ nif(v+¥em)

‘~  Hence, it follows from definition 2.4 that r(x) u of

' g-owth (1’ )0
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COROLLARY 5.2. If wu(x,t)¢ H* for Itl<V ,

) . then u(x,to), (tol <9 i an even entire function of

. growth (1, 1 Y.

4(or =it )

Proof: A Maclaurin expansion of u(x,t) valid for

" |tl <o implies a Taylor expansion about (O,to) valid
o for lt=t | < &=~ 1t | . If we set t-t_ = t* in the
' latter series, then by theorem 4.1, u(x,t*+t ) ¢ H* for

Tt < T - \tol and an application of theorem 5.1
""" egtablishes the corollary.

COROLLARY 5.3. There exists a generalized t\empera-

‘M-»'f’i:f‘j: ture function u(x,t) which is equal to its Maclaurin
series in the strip |(t| < @ and which reduces to f£(x) -
" for %t « O if and only if f(x) is sn even entire function

of srovth (1, F}é’)'

Proof: That the condition is necessary is estab-

 ' lished by theorem 5.1. To prove sufficiency, we assume
o that f£(x) is an even entire function of growth (1, 2:%—")
given by _ _ 2 o

N0 -

o '.~.:"':;,}:;’;,(5'f7)_1 ' £(x) = Z 8, X2




,’ Then,’asvin (5.4)

Go a2 %+k@&‘%,€ﬁ€*l-

n=0

.5Now*cdnsider the series

/
-~

(5 9) Z A r(x)ﬁ-

| -~ ginee 'f(x) is of growth '(1, E%r), we have

o | 1/n-
0 (5410) lin - n e < 2
S n—>® e 4a

_M ‘ and consequently the series (5.9) may be shown to converge |

:‘abaolutely for \t| <o | and repreéents there the

 3. generalizaa temperature function u\x,t) sought. Gloarly*'fﬁ if'f

1u<x.0) - £(x). - L e
‘ ff?vgﬁ,Note that the function '
i £(x) = G(x;i) .
: »+h x | A
(zx)
S 13 an even entire function of growth (1, %) As corollary
’ 5 5 prodicts, thero oxista & generaligzed temperature




G g() = u(0,t), then

s 2 I o o
"ﬂ':'hl"(e.a).‘ u-(x’t:) - Z nlr(v+)€+n) Z %-o-k 22]‘1: AN itl <&,

4,

‘ functionﬁ u(x,t) = G(x; t+i) where

A et e

k=0 (e +%+n)

‘ G(x t+1) - (z_{)vf}i Z 2%k kZ ._{; zn:: L +%+n+k) Zn |
' | v C el<n. S

6. 8Simple series expansions in xax

If the double series (4.1) is summed by columns, a \

generalized temperature function with the Huygens property
. may be represented by a simple Maclaurin series in x‘2 o

_ THEOREM 6.1. If u(x,t) € H* for |t| <o and = -

R o ® . : L
;;.1 (6. e Y ) ,(n) I (v+$h) 2n. 1 .
> :'(6:11? ulx,t) = /gt () b el (tl <o

D=0

© Proof: By theorem 4.1, we have

®

D=0
(83 (%) = u(0,5)

~ 2k, k
1 2
'mé “ 3




o R
R Successive differentiation of (6.3) yields -
e (0 (1) - Z 2k
AR g (%) : (’9+%) %o Tt .

' st . . .
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